J Cell Sci 1967, 2:617–640 PubMed Competing interests The authors

J Cell Sci 1967, 2:617–640.PubMed Competing interests The authors declare that they have no competing interests. Authors’ contributions HA and AI collected animals and made histological studies. HA conceived of the study, and participated in its design and draft the manuscript. AI carried out the histological staining and performed the morphometric analysis. All authors read and approved the final manuscript.”
“Background The prevalence of obesity and metabolic syndrome has increased at an alarming rate. By the year 2030, the number of adults with either type-1 or

type-2 diabetes is estimated to be greater U0126 order than 350 million [1]. Adult onset type-2 diabetes (T2DM) constitutes over 90% of all diabetes cases and is characterized by insulin resistance, abnormal insulin secretion, or both. Of these cases, it is estimated that 16% of people have undiagnosed or poorly managed diabetes (NIDDK National Health Interview survey, 2007–2009). It is well documented that Type-2 diabetes and hepatic steatosis are co-present [2]. The incidence of non-alcoholic fatty liver disease (NAFLD) is prevalent in 40 to 70% of patients with T2DM [3, 4]. This type of liver disease originates as hepatic steatosis, and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis,

and end stage liver failure [5]. T2DM-related NAFLD is not fully understood, but it is known that leptin and insulin are important mediators in the progression of NAFLD [6]. Leptin is a hormone secreted by adipocytes, which binds to the leptin receptor and CH5424802 cell line increases partitioning of fatty

acids towards oxidation instead of triacylglycerol formation [7]. In mice and rats, leptin deficiency causes hyperphagia and obesity [8]. Moreover, the lack of leptin action causes increased insulin secretion, which is hypothesized to cause insulin resistance in rodents and humans [9]. Insulin resistance syndrome is hypothesized to cause NAFLD and augment progression to NASH [10]. T2DM and hepatic steatosis are modeled by a variety of diet and genetically modified rodent models. Db/db mice (BKS.Cg-m +/+ Leprdb/J) mice possess a spontaneous diabetes (Db) mutation in the leptin receptor. Db/db mice are insulin resistant, hyperinsulinemic, hyperglycemic, glucose intolerant, and possess abnormal islet cell morphology [11–13]. They become hyperinsulinemic filipin from 10–14 days after birth; and exhibit significant weight gain with abnormally high triglycerides and low- and very low-density lipoproteins at 3 to 4 weeks of age. Hyperglycemia appears after 4–6 weeks of age. Other mouse models of obesity, diabetes, and NAFLD exhibit altered transporter expression in liver and kidney [14]. Transporters are membrane proteins, which facilitate chemical transport into and out of cells [15]. Organic anion transporting polypeptides, organic anion transporters and organic cation transporters are often referred to as “uptake transporters”.

Comments are closed.