3 2 Chr = Chromosome Discussion Here we have sought to identify

3 2 Chr. = Chromosome Discussion Here we have sought to identify differentially expressed miRNAs in ES xenografts and to investigate the underlying molecular changes by integration of these results with aCGH analysis of the same samples. MiRNA expression profile of ES xenografts Xenografts displayed 60 differentially expressed miRNAs that distinguished them from control samples (Human mesenchymal stem cells). Of these, 46 miRNAs were exclusively expressed in xenografts while 2 (miR-31 and miR-31*) miRNAs were exclusively expressed in controls. The remaining 5 miRNAs (miR-106b, miR-93, miR-181b, miR-101, miR-30b) were

significantly over-expressed while 6 miRNAs (miR-145, miR-193a-3p, miR-100, miR-22, miR-21, miR-574-3p) were significantly under-expressed in xenografts. The expression profiles of 4 miRNAs (miR-31, miR-31*, miR-106b, miR-145) were confirmed by RT-PCR. To evaluate the potential role find more of the differentially expressed miRNAs, three databases were searched for the known ES-associated genes targeted by these miRNAs, by applying target prediction algorithms. The targets included EWSR1 (GeneID: 2130), FLI1 (GeneID: 2313), SOX2 (GeneID: 6657),

p53 (GeneID: 7157), IGFBP3 (GeneID: 3486), IGF1 (GeneID: 3479) and IGF1R (GeneID: 3480). The differential expression of the miRNAs regulating these BYL719 price genes may play a role in the tumorigenesis and tumor progression of ES. Interestingly, miR-150, which targets the tumor suppressor gene TP53, was expressed in all xenograft samples but in none of the control samples. This is in accordance with the study of

Fabbri and colleagues [22] who have included TSGs in their investigation of likely over-expressed miRNA target genes. In addition, one of our xenograft series (Case number 451) showed losses at 17p, containing TP53, that appeared in later passages. Previous ES studies have shown that, despite the low frequency of mutations in TP53, an alteration of TP53, in conjunction with the deletion of CDKN2A, is associated with a poor clinical outcome [23, 24]. Moreover, the homozygous deletion of this gene has been reported in a small subset of ES patients [25, 26]. The IGF-1 pathway, whose genes IGF1R, IGF-1 and IGFBP-3 are among the target genes of the differentially expressed miRNAs, plays a critical role in cancer development, including ES [26–28]. IGF1R Glutathione peroxidase is targeted by miR-145 and miR-31*, and previous studies have QNZ shownIGF1R to be a direct target of miR-145 [29] as well as to be over-expressed in Ewing tumors [27, 28]. As for IGF-1, it is the target of 11 miRNAs including miR-21, miR-31, miR-145, miR-150, miR-194, miR-215, miR-421, miR-486-5p, 548c-5p, and miR-873. Interestingly, IGFBP3, which is among the target genes of miR-150*, was, in our study, expressed in all xenografts but not in control samples. IGFBP-3, which is a major regulator of cell proliferation and apoptosis, inhibits the interaction of IGF-1 with its receptor (IGF1R) [30–33].

Comments are closed.