Collectively, these results provide evidence that 7HF-mediated in

Collectively, these results provide evidence that 7HF-mediated inhibition of pro-inflammatory cytokines functionally results in marked protection in experimental models of acute and chronic inflammation. (C) 2010

Elsevier B.V. All rights reserved.”
“NK cells employ a variety of activating receptors to kill virally infected and tumor cells. Prominent among these receptors are the natural cytotoxicity receptors (NCRs) (NKp30, NKp44, and NKp46), of which only NKp46 has a mouse ortholog (NCR1). The tumor ligand(s) of NKp46/NCR1 is still unknown, but selleck chemicals llc it was shown that the human NKp46 and the mouse NCR1 are involved in tumor eradication both in vitro and in vivo. Whether any of the NK activating receptors is involved in the prevention of tumor metastasis is unknown. To address this question, we studied

the activity of the NK cell receptor NKp46/NCR1 in two spontaneous metastasis models, the B16F10.9 melanoma (B16) and the Lewis lung carcinoma (D122) https://www.selleckchem.com/products/sbc-115076.html in the NCR1 knockout mouse that was generated by our group, in various in vitro and in vivo assays. We demonstrated that all B16 and D122 tumors, including those generated in vivo, express an unknown ligand(s) for NKp46/NCR1. We have characterized the properties of the NKp46/NCR1 ligand(s) and demonstrated that NKp46/NCR1 is directly involved in the killing selleckchem of B16 and D122 cells. Importantly, we showed in vivo that NKp46/NCR1 plays an important role in controlling B16 and D122 metastasis. Thus, to our knowledge, in this study we provide the first evidence for the direct involvement of a specific NK killer receptor in preventing tumor metastasis. The Journal of Immunology, 2012, 188: 2509-2515.”
“Inspection of protein-protein interaction maps illustrates that a hub protein

can interact with a very large number of proteins, reaching tens and even hundreds. Since a single protein cannot interact with such a large number of partners at the same time, this presents a challenge: can we figure out which interactions can occur simultaneously and which are mutually excluded? Addressing this question adds a fourth dimension into interaction maps: that of time. Including the time dimension in structural networks is an immense asset; time dimensionality transforms network node-and-edge maps into cellular processes, assisting in the comprehension of cellular pathways and their regulation. While the time dimensionality can be further enhanced by linking protein complexes to time series of mRNA expression data, current robust, network experimental data are lacking.

Comments are closed.