PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JRH was the primary investigator, designed study, supervised all study recruitment, data/specimen analysis, statistical analysis and manuscript preparation. DRW, NSE, MWH, AJW, DMN, WPM, GTM and AMG were co-authors,
assisting with data collection and data analysis. MSF helped drafting the drafting the manuscript. All authors read and approved SCH727965 supplier the final manuscript.”
“Background Ultra-endurance competitions are defined as endurance performances of more than six hours of duration [1]. Traditionally, ultra-endurance races are held as solo events in attempts to challenge the limits of human endurance. However, the increased popularity of these competitions in recent years
has led to different formats of participation, such as team relays with four riders per team [2]. In comparison with solo events where athletes perform a continuous exercise (> 6 hours) at a mean intensity of ~60% of maximum oxygen uptake (VO2max) [3], team relay competitions elicit intermittent exercise at a mean intensity P505-15 above 75% of VO2max [4, 5]. The nutritional strategy during ultra-endurance events is an important factor that athletes should plan MG-132 price carefully before the race. The amount and the source of energy intake, fluid replacement, as well as the ingestion of stimulants such as caffeine are important O-methylated flavonoid factors directly linked to sport performance in endurance events [6, 7]. In relation with the energy demands, several studies have assessed the nutritional requirements and behavior of cyclists
during solo events [8–10]. However, there is a lack of information about the energy requirements of athletes competing in a team relay. To the best of our knowledge, only one study has estimated the energy expenditure and dietary intake of cyclists during one competition of 24-hour in a team relay format [4]. Surprisingly, this study showed that athletes ingested only 45% of their estimated energy expenditure during the race. These data are in concordance with results reported in solo riders [8–10] despite that in team relay events, cyclists have a considerable time to recover between the bouts of exercise [4, 5]. There is broad evidence that during longer events the energy replacement should be mainly based on food rich in carbohydrate since glycogen stores in the body are limited [11]. This fact could be even more important in intermittent high-intensity competitions such as ultra-endurance team relay events where athletes are performing several bouts of exercise at higher intensity with limited recovery period between them. When carbohydrates are not available, or available only in a limited amount, the intensity of exercise must be reduced to a level where the energy requirement can be met by fat oxidation [7, 12].