Thus, we do not exclude that, in SN-APS

Thus, we do not exclude that, in SN-APS selleck chemical patients, phospholipid-binding proteins may also be involved in anti-phospholipid reactivity, as TLC immunostaining does not exclude this possibility. However, at present the involvement of phospholipid-binding proteins other than annexin II remains unclear. Because, in recent years, our research has focused on the identification

of endothelial autoantigens involved in different autoimmune diseases, studies based on the screening of endothelial cDNA expression libraries also identified vimentin as a new phospholipid-binding protein autoantigen in SN-APS [7]. Interestingly, in almost all the patients the positive result obtained by TLC assay was confirmed with the second result after at least 12 weeks; conversely, two patients negative with the first sample displayed aPL reactivity with the second sample. Of note, one of the last such cases was a 26-year-old female with MG-132 purchase SLE and proteinuria; histological evaluation of the kidney biopsy showed diffuse global lupus nephritis (class IV-G) associated with thrombotic microangiopathy suggestive of APS. Recently, it was demonstrated that aPL may exert

their pathogenic role by triggering a signal transduction pathway involving IRAK phosphorylation, NF-κB activation and translocation with consequent release of proinflammatory and procoagulant factors by endothelial and/or monocytic cells [18,20,25]. In order to verify the possible pathogenic role of the autoantibodies we demonstrate that purified IgG from sera of SN-APS patients induce IRAK serine phosphorylation with consequent NF-κB activation. Interestingly, we demonstrated that aCL as well as aLBPA were involved in this signalling pathway triggering, as these autoantibodies failed to induce many IRAK phosphorylation if they were

previously adsorbed with highly purified aCL or LBPA. Previous studies demonstrated that aPL induce monocyte and endothelial cell TF expression through the simultaneous activation of NF-κB-related proteins as well as aPL induce VCAM-1 on endothelial cells surface and that these effects are correlated with increased adhesion of leucocytes to endothelium [18,25,26]. According to these findings we demonstrate that IgG from SN-APS patients triggering resulted in the expression of VCAM-1, as well as release of TF from endothelial cells, which may contribute to the pathogenesis of thrombosis in patients with APS. Deep vein thrombosis, myocardial infarction and stroke are the major causes of morbidity and death among APS patients due to the high risk of recurrence; therefore, it is mandatory to identify among patients with suspected APS repeatedly negative for conventional aPL tests, those with a true APS to offer them long-term anti-coagulation, as widely recommended for secondary thromboprophylaxis in this disease [27,28].

Comments are closed.