We used a unilateral chronic constriction injury of the rat infra

We used a unilateral chronic constriction injury of the rat infraorbital nerve (CCI-IoN) as a facial neuropathic model. Pain-related behavior of the CCI-IoN animals was tested at 8, 15 and 26 days after surgery (dps). The response threshold to mechanical this website stimulation with von Frey hairs on the injured side was reduced at 15 and 26 dps, indicating the presence of allodynia. We performed unitary recordings in the caudalis division of the

spinal trigeminal nucleus (Sp5C) at 8 or 26 dps, and examined spontaneous activity and responses to mechanical and thermal stimulation of the vibrissal pad. Neurons were identified as wide dynamic range (WDR) or low-threshold mechanoreceptive (LTM) according to their response to tactile and/or PLX4032 mw noxious stimulation. Following CCI-IoN, WDR neurons, but not LTM neurons, increased their spontaneous activity at 8 and 26 dps, and both types of Sp5C neurons increased their responses to tactile stimuli. In addition, the on–off tactile response in neurons recorded after CCI-IoN was followed by afterdischarges that were not observed in control cases. Compared with controls, the response inhibition observed during paired-pulse stimulation was reduced after CCI-IoN. Immunohistochemical studies showed an overall decrease in GAD65 immunoreactivity in Sp5C at 26 dps, most marked in laminae I and II, suggesting that following CCI-IoN the inhibitory

circuits in the sensory trigeminal nuclei are depressed. Consequently, our results strongly suggest that disinhibition of Sp5C neurons plays a relevant role in the appearance of allodynia after CCI-IoN. “
“The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design-based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature

5–10-year-old many macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>