As nearly 60% of the data missing from INSDC reports needed to be

As nearly 60% of the data missing from INSDC reports needed to be supplemented by manual curation (Figure 3), it is not the case that this data is too difficult to Abiraterone price collect or that MIGS is not possible to comply with. Through these efforts to collect richer contextual data, we can better highlight gaps in our biological knowledge of marine phage, and use contextual data to establish “rules and exceptions” [8] to describe the impact of viruses in the marine realm.
We propose to sequence the 1.91 Gb genome of a garter snake (Thamnophis sirtalis, Figure 1), a common, widespread, nonvenomous North American snake that has served as a model for diverse studies in evolutionary biology, physiology, genomics, behavior and coevolution.

Comparative genomic studies in vertebrates are now well underway, and recent months have seen the publication of high-quality genomes of mammals based on de-novo assembly of short-read next-generation sequencing platforms [1]. As of February 2011, the NCBI database and Ensembl contain 51 vertebrate chordate genomes. Among amniotes (which include mammals, birds and non-avian reptiles) only three birds (chicken, turkey, and zebra finch) and one non-avian reptile (a lizard, Anolis carolinensis) are represented. Thus, there is high taxonomic imbalance among the currently sequenced amniote genomes, meaning that detailed comparative analyses with reasonably diverse taxonomic sampling can only be performed within the mammals. Additional non-mammalian amniote genomes are still required to fully leverage the comparative potential of the impressive set of mammalian genomes sequenced or in progress.

Figure 1 Picture of a common garter snake, Thamnophis sirtalis We propose to sequence the garter snake as the next non-mammalian genome because of its key phylogenetic position and because it has been an important research focus for many disciplines, including physiology, evolutionary genetics, morphology, ecology, comparative genomics and life history evolution. In addition to providing much-needed additional taxonomic coverage of the tree-of-life for non-mammalian amniotes and vertebrates generally, a garter Drug_discovery snake genome would provide crucial insight into many areas of biology, including: 1) the genetic basis of limblessness and axial patterning, 2) the genetic basis of highly variable coloration and integumentary patterning, 3) the genetic basis of physiological and metabolic adaptation, 4) adaptation to toxin resistance, 5) birth-death evolution of large multigene families, 6) venom gene evolution, 7) genome structure in terrestrial ectotherms, 8) genetic basis of axial patterning, and 9) genome evolution in Reptilia, the sister group of Mammalia.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>